Lompat ke konten Lompat ke sidebar Lompat ke footer

Widget Atas Posting

Kunci jawaban MATEMATIKA Kelas 9 halaman 102, 103

Kunci jawaban MATEMATIKA SMP Kelas 9 halaman 102, 103 Bab II

Bismillahirrohmannirrohim

Kunci jawaban MATEMATIKA SMP kelas IX halaman 102, 103 Bab II merupakan alternatif Jawaban dari soal-soal Buku MATEMATIKA Kelas 9 SMP/MTs Bab II Persamaan dan Fungsi Kuadrat semester 1. Jawaban yang kami berikan hanya berupa jawaban alternatif saja, sebagai referensi bagi adik-adik . Rajin lah belajar dan membaca dari berbagai sumber agar khasanah pengetahuannya bertambah. Sebaiknya  adik-adik mencoba alternatif  jawaban sendiri.

Kunci jawaban MATEMATIKA Kelas 9 Halaman 102, 103 Bab II Semester 1



Dengan adanya pembahasan kunci jawaban seperti ini diharapkan dapat membantu peserta didik Kelas IX SMP/MTs dalam menjawab soal-soal baik sebagai Tugas Individu maupun Kelompok. Dan Juga dapat menjadi Referensi untuk soal ulangan seperti soal penilaian harian, soal penialain tengah semester , soal penilaian akhir tahun, maupun tugas pekerjaan rumah (PR). Semoga bermanfaat bagi adik adik.

Kunci jawaban MATEMATIKA Kelas 9 Halaman 102, 103 Bab II Semester 1

1. Tentukan sumbu simetri grafik fungsi di bawah ini.

a. y = 2x2 − 5x
b. y = 3x2 + 12x
c. y = –8x2 − 16x − 1

Jawaban :

a) Sumbu simetrinya adalah x = -b/2a = - (-5 / 2x2) = 5/4
b) Sumbu simetrinya adalah x = -b/2a = - (12 / 2x3) = -2 
c) Sumbu simetrinya adalah x = -b/2a = - (-16 / 2x(-8)) = -1

 
2. Tentukan nilai optimum fungsi berikut ini.

a. y = –6x2 + 24x − 19
b. y =2/5 x2 – 3x + 15
c. y = -3/4 x2 + 7x − 18

Jawaban :

Kunci jawaban matematika kelas 9 halaman 102, 103




3. Sketsalah grafik fungsi berikut ini.

a. y = 2x2 + 9x
b. y = 8x2 − 16x + 6

Jawaban :


4. Diketahui suatu barisan 1, 7, 16, …. Suku ke-n dari barisan tersebut dapat dihitung dengan rumus Un = an2 + bn + c. Tentukan suku ke 100.

Jawaban :

Dari persamaan diatas akan didapat :
a + b + c  = 1 (persamaan 1)
4a + 2b + c = 7 (persamaan 2)
9a + 3b + c = 16 (persamaan 3)

*Eliminasi persamaan 1 dan 2*
Didapat 3a + b = 6 (persamaan 4)

*Eliminasi persamaan 2 dan 3*
Didapat 5a + b = 9 (persamaan 5)

*Eliminasi persamaan 4 dan 5*
Didapat 2a = 3 atau a = 3/2

*Subtitusi nilai a ke persamaan 4*
Didapat 3(3/2) + b = 6 atau b = 3/2

*Subtitusi nilai a dan b ke persamaan 1*
Didapat 3/2 + 3/2 + c = 1 atau c = -2

Maka ditemukan persamaan umum rumus Un = 3/2n2 + 3/2n + c
U100 = 3/2(1002) + 3/2(100) + (-2)
= 15.148

Jadi, suku ke 100 nya adalah 15.148

5. Diketahui suatu barisan 0, –9, –12, .... Suku ke-n dari barisan tersebut dapat dihitung dengan rumus Un = an2 + bn + c. Tentukan nilai minimum dari barisan tersebut.

Jawaban :

*Langkah-langkah seperti jawaban nomor 4*
Maka ditemukan persamaan umum rumus Un = 3i2 -18i + 15

Nilai minimum dari barisan tersebut ym = - D/4a = - (b2 - 4ac) / 4a
Nilai minimum = - ((-18)2 - 4(3)(15)) / 4(3) = - (324 - 180) / 12 = -144/12 = -12

Jadi, nilai minimum barisan tersebut adalah -12.

6. Fungsi kuadrat y = f(x) melalui titik (3, –12) dan (7, 36). Jika sumbu simetrinya x = 3, tentukan nilai minimum fungsi f(x).
Jawaban :


Kunci-Jawaban-Matematika-Kelas-9-halaman-102-103



Jadi, nilai minimum fungsi f(x) adalah -12.

7. Bila fungsi y = 2x2 + 6x − m mempunyai nilai minimum 3 maka tentukan m.
Jawaban : 

Sumbu simetrinya adalah x = -b / 2a = - 6 / (2x2) = -6/4 , subtitusi nilai x kedalam fungsi y
2(-6/4)2 + 6(-6/4) - m = 3
m = 2(36/16) - 9 - 3
m = -15/2

Jadi, nilai m adalah -15/2.

8. Dari tahun 1995 sampai 2002, banyaknya pelanggan telepon genggam N (dalam juta orang) dapat dimodelkan oleh persamaan N = 17,4x2 + 36,1x + 83,3, dengan x = 0 merepresentasikan tahun 1995. Pada tahun berapa banyaknya pelanggan mencapai nilai maksimum?
Jawaban :

Dilihat dari persamaan N, nilai N akan selalu lebih besar apabila x + 1 > x.
1995 nilai x = 0
1996 nilai x = 1
1997 nilai x = 2
2002 nilai x = 7

Sehingga pelanggan maksimum akan terjadi pada tahun 2002 dengan x = 7, subtitusi x ke persamaan N

N = 17,4x2 + 36,1x + 83,3
= 17,4(7)2 + 36,1(7) + 83,3
= 1,1886 miliar pengguna

Jadi banyak pelanggan mencapai nilai maksimum terjadi pada tahun 2002 dengan jumlah pelanggan 1,1886 miliar pengguna.

9. Jumlah dua bilangan adalah 30. Jika hasil kali kedua bilangan menghasilkan nilai yang maksimum, tentukan kedua bilangan tersebut.
Jawaban :

Misalkan dua bilangan tersebut adalah a, b dan = 30 - b

f(b) = a × b = (30 - b) × b = 30b - b2
nilai turunan = 0
30 - 2b = 0
2b = 30
b = 15

a = 30 - b
a = 30 - 15
a = 15

Jadi, nilai kedua bilangan tersebut adalah 15 dan 15.

10. Selisih dua bilangan adalah 10. Jika hasil kali kedua bilangan menghasilkan nilai yang minimum, tentukan kedua bilangan tersebut.
Jawaban :

Misalkan dua bilangan tersebut adalah a, b dengan a > b maka a = 10 + b sehingga

f(b) = a × b = (10 + b) × b = 10b + b2
nilai turunan = 0
10 + 2b = 0
2b = -10
b = -5

a = 10 + b
a = 10 - 5
a = 5

Jadi, nilai kedua bilangan tersebut adalah -5 dan 5.


Demikian Pembaca Kunci Jawaban MATEMATIKA SMP Kelas 9 halaman 102, 103  Bab II buku siswa kelas IX SMP/MTs kurikulum 2013.

Tentunya ini hanya sebagai alternatif saja  Untuk itu diperlukan kebijakan Bapak/Ibu untuk memilah dan menggunakan nya.

Akhir kata semoga bermanfaat, dan jangan lupa memberikan saran dan komentar positif anda pada Kolom yang tersedia untuk kemajuan website ini.

Posting Komentar untuk "Kunci jawaban MATEMATIKA Kelas 9 halaman 102, 103"